
SCENARIO-BASED SPECIFICATION AND EVALUATION OF
ARCHITECTURES FOR HEALTH MONITORING OF AEROSPACE

STRUCTURES'
Raxi Mukkamala', MBritton and P. Sundaram

Department of Computer Science,

Old Dominion University, Norfolk, VA.

1. Introduction
HUMS systems have been an area of increased

research in the recent times due to two main
reasons: (a) increase in the occurrences of accidents
in the aerospace, and (b) stricter FAA regulations
on aircrafts maintenance [2]. There are several
problems associated with the maintenance of
aircrafls that the HUMS systems can solve through
the use of several monitoring technologies.
Currently, a variety of maintenance programs are
institutionalized by the aircraft carriers that mostly
involve visual inspections and hence are m-prone
[3]. Automatic, continuouS health monitoring
systems could siqify the maintenance tasks as
well as improve the efficiency of the operation,
thereby enhancing the safety of air travel and also
lowering the total lifecycle costs of aircrafts [l].

In addition to the common, well-known
objectives, HUMS systems for aircrafk h v e
expanded their m y of activities in track with the
developments m other HUMS domains [See 3-10].
The general objectives of HUMS include the
following:

To perfm operational health
To perform structural health monitoring,

monitoring,
To monitor usage of airrraft components,
To perform prognostic and diagnostic
analyses

All the objectives require a multi-disciphary
approach for successll implementation. For
example, collective advancements m mechanical
engineering, electronics and instrumen tation,
computer science etc., are essential for
accomplishing the objectives.

cost-effective as well as efficient in their
functioning for the acceptance of the air&
carriers in their maintenance programs [2]. Several
problems continue to affect the credibility of
HUMS systems like (a) high incidence of false
alarm rates, (b) abundance and ambiguity of data
present, (c) high cost of implementation, etc. [4].
So, researchers are focused on the development of
tools and techniques that promote successll
implementation of HUMS systems.

Scenarios are tools that are increasingly
finding applications in several stages of system
development lifecycle. They have been
demonstrated for their effectiveness in requirements
analysis, specification, design, documentation, user
testing, and evaluation. We have employed
scenarios in the development of HUMS in three
main areas. They are: (a) to improve reusability by
using scenarios as a library indexing tool and as a
domain analysis tool, (b) to improve maintainability
by recording design rationales fiom two
perspectives - problem domain and solution
domain, and (c) to evaluate the sohare
architecture. It is our belief that scenarios can be
highly valuable for developing systems that involve

Besides, HUMS systems must prove to be

' This work is supported m part by a research grant from NASA Langley Research Center, Hampton, Virginia-
Contact author: Email: m&caQcs.odiu.edu -

4

designers from multiple disciplines and that exhibit
real-time constraints.

employing scenarios in the specification and
evaluation of architecture for HUMS. Section 2
investigates related works that use scenarios in
software development. Section 3 descriis how
we use scenarios in our work, which is followed
by a demonstration of our methods in the
development of KUMS in section 4. Conclusion
summarizes~resul~.

This paper documents our methodology of

2. Related Work
Applications of scenarios could be classified

into two categories depending on the target usage:
(a) Humancomputer interaction, where scenarios
take an active role in improving usability,
understanding user needs, enabling team building,
etc., [l5, 16, 18,193 and (b) Software engineering,
where scenarios are used to generate designs, to
evaluate designs, to speclfy requirements, etc. [21-
231.

Kyng explains how scexmios could be
employed to effect cooperative design or user-
centered design [lq. Three difkent types of
scenarios - use scenmios for system envisionment,
explanation scenarios for technical fmiil i ty
verification, exploration scenurios for new
possibilities investigation - are explained. Our work
differs fiom Kyng’s in that we use scenarios
especially to capture the effect of different
constraints on the desired quality attributes of the
system.

Scenarios could also be used as a fiamework
of evaluation as in enabling designers to reuse
design insights in a retrospective manner [20]. Our
work too focuses on using scenarios for improving
reusability in two ways: (a) as an indexing tool for
the reuse libmy, (b) as a domain analysis tool.

S A A M is an evaluation method that uses
scenarios in analyzing architecture for different
quality attributes [23]. The architecture quality is
analyzed by measuring the extent of code
modifications required to implement a scenario.
SAAM is well suited to be used during
implementation stage, while ours is appropriate to
be used during design stage to uncover the

problems with the architecture and to improvise it
before implementation.

ATAM= is an architecture analysis method
that enables the developers to understand the
tradeoffs involved in the different design decisions
and hence to evolve a better design [29]. Our use of
scenarios in evaluation is based on ATAMw but we
improve on it by taking a microscopic view of
effect of different quality attributes.

3. Specification and Evaluation of
HUMS

Our work uses scenarios mainly to accomplish
three objectives: (a) to improve reusability of
components, (b) to improve maintainability and
understandability of software, and (c) to evaluate
the system for the desired quality amiiutes.
Scenarios prove to be effective tools in the
development of large, complex, d - t ime systems
like HUMS. They also serve to preserve the
priorities and the values of the team members,
which vary across teams of different disciplines.
This section explains how we use scenarios in the
specification and the evaluation of HUMS.

There has been no consensw over the correct
definition of scenarios and their level of granularity.
However, this chaos has only contributed to the
creative use of scenarios for various purposes r a k
than the other way around. Scenarios are generally
used as a complimentary form of representation or
specification in addition to textual descriptions and
diagrammatic models, and take on various forms
like stories, prototypes, mockups, etc. [13].
Scenarios could be defined as the narrative
description of the interactions between the system
and its environment, and are usually couched at two
different levels: (a) Application level, which
contains infonnation about a specific functionality,
and (b) Context level, which contains high-level
information [14].

3.1 Devekbpment of Scenarios
Any system could be descnid as the

transformations of users’ tasks. Therefore, the first
step in the deypllopment of anyqstem jnydves
capturing of the user interactions (usually as
scenarios or use cases). We have evolved a heuristic
to develop scenarios that serves to be beneficial

5

especially in the design of real-time systems. This
heuristic is based on Jacobson's work [21].

Identify all the actors of the system.
"Actor is a role of object or objects
outside of a system that interacts directly
with it as part of coherent work unit
[32]".
Find out all mteractions that an actor
initiates with the system that involves
transfer of data. Investigate the type of
data, and its cham&ax& cs (e.g., data
rate of sensors) in order to elicit as much
requirements as possible.
Iden* all interactions that an actor
initiates with the system that involves
transfa of control.
Iden* all the interactions that an actor
initiates with other actors.
Repeat the steps 2 & 3 to identify all the
interactions that the system initiates with
the actors.

. .

We followed these steps while we gathered the
requirements for HUMS. This heuristic helped us to
ensure compl-a of the specification developed
from requirements gathering.

3.2 Scenarios as Reuse Library Indexing Tool

serve different purposes ranging fiom recording of
work situation overviews or problem descriptions,
to the recording of evaluation results at the
architecture design stage. These scenarios could
serve as a valuable tool for developers to solve
several problems in the system during initial
development as well as during system maintenance
in future.

problems that technical managers face in new
projects are already solved by them in past projects.
Therefore, a library of past problems and the
solutions adopted could expedite the decision
making process in the new development work. We
found that such a library could benefit a project like
HUMS involving teams from disparate disciplines
by serving as a common source of information for
all members and at the same time promoting the
priorities and the values of the different teams.

Different types of scenarios are emgloyed to

According to surveys, more than 70% of the

Scenarios could be stored in a library
catalogued by different sets of indexes. These
scenarios could be a combinaton of design insight
scenarios, explanation scenarios, exploration
scenarios, work situation overviews, etc. The
indexes may be grouped in any order based on the
desired target usage of the h i . Such a provision
would allow users to perfim a simple keyword
match as well as a complex search using other
criteria like approaches to problem solving, design
insights, evaluation results, etc. and thus would
provide pointers to either effective solutions or
potential pitfalls associated with a specific design
for a specific problem. These systems could also
help new learners to educate t h m l v e s fiom the
past work making use of several problems and the
solutions developed.

Providing access to a library of reusable work
products is a key factor in ensuring successful
implementation of li'brary. The existing reuse
methods fiorn software engineering may not be
appropriate for a complex need such as that outlined
above. We found that the scenarios could provide
the required flexibility to enable efficient access to
the library, thus helping to increase the productivity
of software development. We could eventually
build case-based reasoning systems to provide us
help on developing designs as well as to offer
feedback to designs based on the historical
knowledge base of all the cases, i.e., scenarios &om
the past. Thus, the specification of system
architecture in terms of scenarios can enable us to
improve accessibility to the reusable work products
in a library.

3.3 Scenarios in Domain Andpis
One of our project objectives was to perform a

domain analysis of HUMS systems and to develop a
comprehensive, reusable, open Standards-based
generic architecture for structural health monitoring
of aircrafts. Domain analysis is adopted by the
software reuse community in order to increase the
productivity of s o h a r e development [24-251.

Domain study focuses on identifling the
commonality and variability of applications in a
domain. This gndmstanding can help us to
generalize and specialize the design components,
making them applicable across applications and
hence improving the reusability of components.

6

The HUMS domain has several systems built
for different target eilvironnlents like aircmf@
helicopters, spacecrafts, industry machinery, etc.
So, domain analysis could help us to identify the
commonality and variability of all the systems in
the domain and hence enable us to improve
reusability. The well-known reusability taxonomy,
shown in figure (l), plays a cardinal role in domain
analyses.

A N D -
Reusability Reusability of

Reusability

others
Reusability of other

requirements, test
cases, designs)

work products (E.g.,

Figure (1) Reusability of Work Products: A
Simple Taxonomy

Every system has speczjk objectives. Our
domain analysis method dwells on the ability to
describe any system in terms of its objectives (and
design decisions) alone. Objectives of the system
and the various design decisions made are captured
using an objectives tree. Every node on the tree
represents an objective or a design decision and the
arcs in the tree links the objectives or design
decisions to sub-objectives or sub-design decisions.
Figure (2) presents a model of the objectives tree.

development of the objectives tree. As scenarios
capture all the possible user interactions, they form
the basic list of objectives for the system. For
example, “to gather sensor data” is a scenafio of
interaction with the system and it also represents an

‘ objective of the system. As an example of a
scenario encapsulating a design decision, consider a
user interaction such as “request prognostic
analysis”, which uses physics-based prognostics.

The objectives in an objectives tree could be
mapped to specific classes or objects or subsystem.
If an objective has to be implemented in exactly the
same ways in multiple applications, then the
mechanisms present in those applications that

Scenarios play a central role in the

satisfy the objective is the commonality of the
applications.

Sub-Sub I I Subsub
Objective Objective

Figme (2) Objectives Tree Model

Table (1) Composition Rules for Objectives

decisions are used

Any one of the sub-objectives or
subdecisions are used
Any combination of sub-objectives
or sub-decisions is used. This is the
default.

I i
Variability of applications is not a

straightforward issue as commonality among
applications since variability could exist at the sub-
system level or at the object level.

The mapping between the objectives tree and
the object model of the system is utilized for
performing the commonality-variability analyses.
This method provides several distinct advantages
over other methods like [25]. Various advantages
are listed below:

Objectives-based domain analyses aids
object-based reuse paradigm,
Objectives and design decisions form the
logical starting point in system
development and could be easily
generated fi-om scenarios,

7

These models can be mapped to
classedobjectdmodules in the library
thereby providing traceability to the
realization of genexalization or
specialization,
The organization obviates the need for
special or complex notations because the
objectives and decisions can be
expressed hierarchically. See Table (1)
for the set of composition des.

dif€knmt issues that can be independently
dealt with.

Hierarchyalso allows seplaatian of

3.4 Scenarios to Improve Maintainability
Maintainability is defined as ‘the ease with

which a software system or component can be
modified to correct faults, improve performance, or
other attributes, or adapt to a changed environment”
[26]. According to statistics, maximum time and
effort is expended for system maintenance when
compared to all other stages of system development
lifecycle.

Understandmg the design rationales can
contribute to simp@ and to improve the
maintenance activities. We use scenarios to capture
the design rationales from two perspectives -
problem domain and solution domain - and thus
offer a comprehensive solution. Such scenarios also
serve as qualitative metrics to evaluate complex
systems and thus act as substitutes when
quantitative metrics don’t exist.

rationale idomtion from the problem domain
perspective, while the design insights document the
same infibmation fiom the solution domain
perspective. This set of scenarios helps m the
evaluation of architecture as well as serving as a
continuum of understanding between initial
developers and those of the future (who prunarrly
indulge in maintenance). Evaluation of architecture,
explained in the section 3.5, provides a quantitative
account of the system design. The scenarios
described here provide qualitative description of
different design artifacts and can thus serve as
qualitative measuredmetrics.

maintainability of HUMS systems focuses on two
primary issues that can simplify performing

Work situation overviews capture the design

Our work employing scenarios to improve the

changes to the system. The issues are: (a)
Recording of design insights, and (b) Recording of
problem descriptions or work situation overviews.

3.4.1 Scenarios as Design Insights (Solution
Domain Perspective)

Scenarios are used to record the design insights
gained during the development of “MS. They act
as effective tools due to their flexibility and their
ability to gather infomation that could not be
captured entirely in statistical reports, quantitative
results, specific incidents, etc.

understanding the problems that exist in the system,
by experimenting with different solution
approaches, etc., eventually finding an optimal
solution. However, these insights are not recorded
methodically and hence it becomes difficult for
developers who maintain the system later. This is
because the fbture developers lack the background
of the initial system study, problems involved,
different approaches tried, etc. Thmfore, it is
essential to cany forward these insights to enable
developers in their maintenance work. We use
scenarios to fill the gap between the initial
developers and the future developers by promoting
understanding of the design intricacies involved as
well as continuing such understanding throughout
development.

Here are a few rules to adhere to in the
development of scenarios for design insights. (a)
Scenarios must explain the design with reference to
a quality attribute such as scalability, performance,
etc. Thus, each scenario can m e as a local,
qualitative measure used to evaluate the
architecture. (b) Scenarios must expound on all the
different combinations for the specific interaction
under consideration. These combinations might be
chosen based on the interests or the c v of
the different stakeholders involved in the system
development.

Generally, designers gain design insights by

~

3.4.2 Scenarios as Work Situation overviews
(Problem Domain Perspective)

Work situation overviews serve as rati0~1es
for specific designs adopted for the developme& of
the system from problem domain perspective and

8

hence, they serve as a compliment to the design

Work situation overviews or problem
descriptions m d how the different functions were
performed before the deployment of the system.
This jnfinmation mostly would be obvious to the
team involved in the initial development but not
quite so for the team responsible for maintenance in
future and hence must be recorded.

insights.

Scenarios could be used to record the issues
that arose and the decisions taken to solve them.
These scenarios also farm a commo~l ground for all
the different teams s p e x d m d in different fields, as
in HUMS system development.

work situation overviews:
Following are the set of rules for developing

e Document information that serve as
background or contextual details. For
example, while recording information
about different fbults, it is beneficial to
record about diffkent maintenance
activity types that exist to detect and
correct such faults.
Record the solution approach (usually the
manual scheme) as how it exists before
the deployment of the system
Record how desired quality attriiutes are
affected without the proposed system in
place

3.5 Evaluation of HUMS System for Qual*
Attributes

Evaluation of architecture even before
implementation results in a number of marked
benefits like improvement in developer
productivity, lowering of development costs,
opportunity to try different designs, etc. In our
work we use scenarios to evaluate whether the
system satisfies the set of desired e t y attributes.

major categories by Kazman, et al. [23], as follows:
(a) Based on input-output (e.g., correctness,
performance, security, etc.), (b) Based on activities
of a particular user (e.g. usability, predictability,
etc.), and (c) Based on the actiyities of maintenance
team (e.g., maintainability, portability, etc.). We
focus on the first category of attributes here.

The quality attributes are classified into three

~~

Real-time systems like HUMS impose a
number of constraints on the system, which the
design must satisfy. The degree to which the
architecture satisfies the constmints is linked to an
indication of a measure of the quality attriiutes of
the system. It is possible to measure this aspect by
quantitative means for simple to moderately
complex systems. We use a mixture of quantitative
measuredmetrics and qualitative measures to
evaluate the architecture developed for HUMS.

another, either in the positive direction, aiding each
other, or in the negative direction, conflicting with
each other. Therefore, it is essential for system
designers to perform tradeoff analyses during
design stage to achieve an optimum solution. h this
regard, much of the work that is already completed
by different attribute communities can be utilized
[29,30].

Our method is based on ATAMsM in principle
but it differs in the way the evaluation is carried
out, thus offering an alternative evaluation method.
ATAM= considers the suggested design, the set of
constraints and the assumptiom to develop an
analytical model. Our method focuses on each step
of scenario in the analysis and hence operates at a
detailed level. Investigation of constraints
information at each step of a scenario also helps to
elicit the system requirements better.

Following are the steps involved in evaluation
of any architecture using scenarios:

The quality attriiutes of a system affect one

Build a constraints matrix (2 x 2) with
rows mapped to system scenarios and
columns mapped to desired quality
attriiutes,
Flesh out the matrix with constraints
information. These constmints affect
achievement of quality attributes.
Construct a system representation that
facilitates building of analytical models
for evaluation. E.g. UML sequence
diagrams to evaluate performance
Use the constraints matrix and the
available quantitative data to refine the
model
Use any of the methoes - custom
developed or those developed by the

9

different attribute coxnrnunities - to
evaluate the architecture
Perform trade-off analysis

An architecture style contains information
about the components, their topology and the
advantages and the disadvantages for using the
style. Such infinmation can be used in the selection
of a candidate a r c h i m style out of many
possible styles. This step can be simplified by
making use of the constramts * matrix. Different
constraints of the envinmment detemine the quality
attriiutes that are essenfial far a system. Diagrams
similar to the fish-eye diagram [23] could be built
based on the constmints matrix. This exercise
brings into focus the most important attributes to a
system and hence, could be used in initial selection
of the candidate architecture styles.

These quantitative evaluations could make use
of several quantitative evaluation metrics such as
performance metrics, scalability metrics, etc. [27l.

4. Use of Scenarios in HUMS
Development: Demonstration

This section demonstrates the concepts
introduced in the previous section through several
examples fkom the development of HUMS systems.
First, an overview of the system is provided,
followed by the examples and explanations.

4.1 System Overview
HUMS systems are online, continuous health

monitoring systems that are deployed on aircrafts in
order to improve the accuracy of fault detection as
well as to simplify the maintenance operations by
automating most of them. Usually, the aircrafi

order to upkeep the health of different equipments
on board, where most of the maintenance activities
are manual and thus are error-prone. HUMS system
monitors the health of equipments by employing
sensors that are mounted on critical parts of the
equipments on the aircraft and by using several
processing systems distributed throughout the
aircraft to process the sensor data in order to detect
any abnormalities with the system. HUMS can
intimate the maintenance personnel once a fault bas
been detected, thus initiating corrective actions on
time. These systems are also capable of predicting

carriers institute several maintenance programs in

when hults occur in future (prognostics) as well as
diagnose the causes of hults (diagnostics).

4.2 Requirements Gathering

interact with the system. They are:
We have identified six different actors that

Maintenance personnel: People
responsible for mounting the sensors,
maintain t h q carry out visual
inspections, etc.
Operators: End-users of the HUMS
systems like pilots, Managers, etc. who
plan or make decisions based on the
system results
System implementers & testers: People
responsible for deploying the HUMS
sym-
Ground staff: Experts on the ground
station providing diagnostic information
and who help in decision making,
Other systems: External (subdomain)
systems like OS, DBMS, etc.
SensorS
End user: Super actor of Maintenance
personnel, Operators, System
implementers, and Ground staff

Table (2) shows a set of scenarios generated
for these actors.

4.3 Enhancing Reusability

domain involving systems developed for different
target environments like aircrafts, helicopters,
industry machinery, naval systems, etc. and
scenarios were gathered as shown in Table (2).
Objectives and design decisions were isolated fiom
these scenarios and were organized as an objectives
tree based on the model shown in figure (2). As an
example, the objectives and design decisions
involved in the development of prognostics support
for HUMS system for aircrafts is shown in figure
(3). As can be seen fiom figure (3), the prognostic
system might be equipped with either condition
prognostics, or failure prognostics, or both. When
considering these objectives, different applications
in the domain might implement part or all the
objectives specified in the diagram.

Domain analysis was perfmed for HUMS

10

~ _ _ _

Once the objectives tree is built, classes and the presence of branch 'A' under 2 different nodes
might indicate commnality. objects in the object diagram can be mapped to

different nodes on the tree. A subsystem itselfcan
also be mapped. The next step is to perform
commonality and variability analysis. For example,

Table (2) provides a Sample of a Subset of Scenarios Developed for HUMS.
1. Gather sensor

input

2. Install new
sensor grid

3. Change sensor
settings

4. Request
Fatigue
detection
analysis

SenSOrS,
Maintenance
personnel

System
implementer &
testerhiaintenance
personnel

Maintenance
personnel

End User

0

System accepts the sensor data based on
the data acquisition policy.
System performs data validation to
reduce the false alarmrates
If data validation proves that the sensor
is malfimctioning, manufacture data to
keep up the supply & intimate
maintenance personnel
System performs data correction to
normalize the values (if required)
System stores the data either temporarily
or p e e ~ e n t l y for fixther analyses.

MaintmmcepersonneVsystem
Implementer enter information about the
new sensor grid

information and save it
He/she enters senso~fs] settings

System saves the i n f i t i o n

0

0 Change the settings information
0 System updates the changes
0

Select the sensor or set of sensors at any
appropriate level

End user specifies a chronological period
for input data range.
End user specifies the analysis method(s)
for structural fault detection
The system performs the analyses based
on the inputs
The system displays the results

0

0

0

-L
The service is designed to be implemented as autonomous units in dflerent clusters.
Accordingly, even when the number of sensors a d o r the number of structural components
to be covered is scaled up, the load can be handled by establishing additional service units.
Since each of the buffering service units can incorporate multiple data servers supporting
buffers andjire systems, it is easy to make a unit more scalable by increasing the number of
data servers. Ifthe buffer controller is found to be a bottleneck, using the relationship
services, it is easy to reassign the sensors (arrd sensor-controllers) te da#krat b@m*ag
services.
Since the buffer controller, the buffers. and the fire servers are not closely tied in terms of
geographical proximity, there is much more flexibility in assigning resources when a system
ir r m l d tin

0

0

11

scenario that serve as qualitative evaluation of
scalability of HUMS. Buffering services is one of
the five key modules that are part of HUMS kernel.
(See [28] for more details).

Thus, this tree could help us to determine how
to improve reusability of components across
applications and to build generic components that
have wide applicability in the domain. - -

Another advantage is that this model could
help the designers to iden* simiZar functionality
(commonality) within an application itself. This
promotes modular design of the system and so,
once the reusable cOmpOnentS are identified, we
could use a set of modularitymetrics like degree of
coupling, degree of cohesion, etc. to validate the
design.

The scenario is oriented towards attainment of
a quality attribute (scalability) and captures
different combinations of the interaction like
increase in number of sensors (in future),
geograpbical expansion of the area of th system,
and the presence of bottlenecks in the system, thus
satisfying both the rules for design insight
scenarios. The scenario specifies how different
designs help to overcome these issues. Thus,
scenarios containing information on design insights

4.4 Enhancing Maintainabiiity

improve maintainability are provided. These two
examples are not related but indicate the essential
aspects of the scenarios. But in practice, we have
two matching scenarios for problem description and
design insights.

could act as design Ationales and help h-better-
maintenance of the system

Scenarios for problem descriptions or work
situation overviews also provide design rationales.
Figure (5) presents a work situation overview
scenario of unscheduled maintenance.

In this section, examples for the scenarios that

To perfinm prognostics
I N

To pedorm component-level To perform system-level
prognostics prognostics

1 1
To d o r m condition prognostics

1 e 1
To use probabilistic feature
based method

f To gather
data

Use Fuzzy logic

Use signal auto-
correlation

Use hi-pass filtering

To validate

-b Tofusedata

Use DemDster-Shafer fusion

Use Baysian combination

To d o r m failure ~ o g n o s t i ~ s

based method

To display decision support information @UL
time, Cost-benefit analysis results)

1L.

Figure (3) Objectives Tree for Developing Prognostic Support in HUMS

Unscheduled corrective maintenance is usuallyp@onned when h g e , de$&, or
degradation are discovered during operational inspections and chech by aircrew, maintenance,
or support personnel (e.g., pre- and post-jlight insptions and service check). In most ma, the
problem will be immediate& corrected under an engineering order or action. Such unscheduled
corrective maintenance activitia are normally accomplished by air carrier or contractor
maintenance technicians following the calibration, repair, and overhaul procedures publidud in
the airline maintenance manual, aircrafi stmctural repair manuals, and work cards. Flenever
possible, minor maintenance and repairs arepegonned on the fright line (i.e, without returning
the aircraj? or component to the maintenance shops). Unscheduled maintenance requirements
always have the potential to cause costly departure delays.

1

Figure (5) Work Situation Overview: Unscheduled Maintenance (131)

Scenario Performance Rel iabi i
Gather sensor Latency = (0.5-1) Reliability of
input communication

(network/wireless)

protection against

disk crashes

Scalabiitv I Storaee I
Support N
SenSOrS hours of sensor

Space to store 100

data before
offloading

N/A Available disk

N/A Available disk

Support N TPS capacity of

space

space

SenSOrS disk
Support N TPS capacity of
sensors

Figure (7) UML Seqnence Diagram for "gather sensor data" Scenario

13

This scenario presents the background or
contextual idonnation, the method adopted as
solution before the deployment of HUMS, as well
as quality factors affected.. For example, the
presence of different maintenance tasks like pre-
and post-flight inspections and Service checks, who
perfonnsthemaintenance,wherethemaintenance
is performed, its effects, etc. may provide enough
background for the future develqxrs to understand
the problems and to better relate the designs
(solutions) to the! problems that exist.

4.5 Evaluation of I!.lU+B for Quality
Attributes

constraints matrix was constructed as shown in
figure (6). Four quality attriiutes are chosen for
demonstration, which constit.uk all the columns.

cell based on the corresponding scenario and the
quality attribute. For example, latency of processes
and communication reliability are factors that affect
quality attributes, performance and reliability
respectively.

built for the scenario "Gather sensor data" as shown
in figure (7). Sensor, data manager, validation
object, and normalizer are entities that participate in
the interaction

quantitative data may be assigned to the
representation. For example, the duration of
execution may be provided on the diagram.

Step5:Analyzethemodelfortheeffectona
specific attribute. For e.g., using the data fiom step
4, we could calculate the total latency involved in
the operation and check p see if the chosen design
satisfies the latency constraint of 0.5 to 1 ns.

Step 6: We could use different representations
or the same representation as in step 3 to analyze a
different attribute such as reliability, robustness,
etc. We could then analyze the tradeoff between the
attributes based on the quantitative information
obtained so far.

Step 1: Using scenarios from table (2), a

Step 2: Constraints information is filled in each

Step 3: As an example, a sequence diagram is

Step 4 Using the constraints matrix,

5. Conclusion

compuW interaction (Ha designs. Recently, they
have been successfully adopted for many of the
software engineming work. This paper documents a
few applications of scenarios in the design and
development of real-time systems like HUMS. Use
of scenarios in enhancing reusability, improving
maintainability and in evaluation of software
architecture was demonstrated.

Scenarios have mostly been used for human-

d Refeences
[11 Kent, Renee and Dermis Murphy, Jan 2000,
Health Monitoring System Technology Assessments
- Cost Benefts Analysis, Technical Report,

[2] Munns, Thomas, et al., Dec 2000, AnaZysk of
regulatory guidance for health monitoring,
Technical report, NASA/CR-2000-210643

[3] Munns, Thomas, et al., Feb 2002, Health
Monitoring for Aifiame Structural
Characterization, Technical Report, NASNCR-

[4] Tumer, hem & Anupa Bajwa, 1999, A survey of
aircraft engine health monitoring systems, AIAA-

[SI Orsagh, Rolf, Mike R m e r , & Ben Atkinson,
May 2000, An Internet-based Machinery Health
Monitoring system, Impact Technologies, MFPI
Committee Meeting, VA Beach,

[6] Kaqnzymki & M J. Roemer, Dec 2000, Health
Monitoring Strategies for 21" Century condition-
based maintenance systems, Intl' COMADEM
Congress, Houston, TX,
[q Vergroesen, et al., May 1998, An automatic in-
flight Data acquisition system for the R" Lynx
Helicopter, The 19" Intl' Symposium on Air&
Integrated Monitoring systems

[8] Patterson-Hine, Ann, et al., A model-based
health monitoring and diagnostic system for the
UH-60 Helicopter, May 9-1 1,2001, Proceedings of
the AHS International 57th Annual Forum and
Technology Display, Washington, DC
[9] Galie, Thomas, et al., March 2001, Prognostic
Enhancements to Diagnostic Systems for improved
Condition-based maintenance, IEEE, Big Sky, MT

NASNCR-2000-209848

2002-21 1428

99-2528

14

[101 Bartelds, Sept 1 997, Aircraj? structural health
monitoring, prospects for smart solutions fiom a
European standpoint, NLR TP 97489, The htl'
workshop on structural healthmonitOring, Stanford,
USA

[1 13 , Open system Alliance for Condition-
based maintenance web site, http://osacbm.o&

[123 , Machinery Information Management
Open Systems Alliance, httu://mvwmimosa.ord
[131 Carroll, John, 1995, The scenario perspective
on system dwelopment, Scenario-based design:
Envisioning work and technology in system
development, John Wiley & Sons, Inc.

[14] Kuutti, Kari, 1995, Workprocesses: Scenarios
as a preliminary vocabulary, Scenario-based
design: Envisioning work and technology in system
development, John Wiley & Sons, hc.
[151 Erickson, Thomas, 1995, Notes on design
practice: Stories and prototypes as catalysts for
communication, Scenario-based design:
Envisioning work and teclmology in system
development, John Wiley & Sons, Inc.

[16] Nielson, Jakob, 1995, Scenarios in discount
usability engineering, Scenario-based design:
Envisioning work and technology in system
development, John Wiley & Sons, Inc.

[171 Kyng, Morten, 1995, Creating confats for
design, Scenario-based design: Envisioning work
and technology in system development, John Wiley
& sons, Inc.

[1 81 Karat, John, 1995 , Scenario use in the design
of a speech recognition system, Scenario-based
design: Envisioning work and technology in system
development, John Wiley & Sons, hc.

[191 Muller, et al., 1995, Bifocal tooh for scenarios
and representations in partici@atoy activities with
users, Scenario-based design: Envisioniug work and
technology in system development, John Wiley &
sons, Inc.

[20] Carey, Tom & Makrusli, 1995, Usage
representations for reuse of design insights: A case
study of access to on-line boob, Scenario-based
design: Envisioning work and technology in system
development, John Wiley & Sons, hc.

[21] Jacobson, Ivar, 1995, n e Use-case construct
in object-oriented software engineering, Scenario-
based design: Envisioning work and technology in
system development, John Wiley & Sons, Inc.

[22] S.P.Robertson, 1995, Generating object-
oriented design representations via scenario
queries, Scenario-based design: Envisioning work
and technology in system development, John Wiley
& sons, hc.

[23] Kazman, et al., Nov 1999, Scenario-based
analysis of sojhvare architecture, Vol. 13, No. 6,

[24] G. Arango, April 1994, A Briefintroduction to
Domain Analysis, ACM symposium on applied

[25] Kang, Kyo, et al., Nov 1990, Feature-Oriented
Domain Analysis: Feavibility Study, Technical

[26] ,1990, IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard
Computer Glossaries New York, W. 1990

[27] Mukkamala, Ravi, 2000, Distributedscalable
architectures for health monitoring of aerospace
structures, 19* Digital Avionics Systems
conference

[28] Mukkamala, Ravi, et al., 2001, Design and
analysis of a scalable h e 1 for health management
ofaerospace structures, 20" ~igi ta l A V ~ O ~ ~ C S

Systems conference

[29] Barbacci M., et al., May 1998, Steps in an
architecture tradeoff analysis method: Quali@
Attribute Models and Analysis, Technical Report,

[30] Klein, Mark and Rick Kazman, Oct 1999,
Attribute-based Architectural Styles, Technical

[31] Hoss, Robert & Edward Lacy, 1993, Fiber
Optics, 2nd ed., Rentice Hall

[32] , Sept 1997, UML Notation Guide ver
1.1, Rational Software Corporation,
httu://www .rational.com/uml

EEE Software, pp.47-56

computing

Report, CMU/SEI-90-TR-2 1

CMU/SEI-97-TR-029

Report, CMU/SEI-99-TR-o22

15

